Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Cancer Drug Targets ; 19(11): 854-862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250756

RESUMO

Src homolog and collagen homolog (Shc) proteins have been identified as adapter proteins associated with cell surface receptors and have been shown to play important roles in signaling and disease. Shcbp1 acts as a Shc SH2-domain binding protein 1 and is involved in the regulation of signaling pathways, such as FGF, NF-κB, MAPK/ERK, PI3K/AKT, TGF-ß1/Smad and ß -catenin signaling. Shcbp1 participates in T cell development, the regulation of downstream signal transduction pathways, and cytokinesis during mitosis and meiosis. In addition, Shcbp1 has been demonstrated to correlate with Burkitt-like lymphoma, breast cancer, lung cancer, gliomas, synovial sarcoma, human hepatocellular carcinoma and other diseases. Shcbp1 may play an important role in tumorigenesis and progression. Accordingly, recent studies are reviewed herein to discuss and interpret the role of Shcbp1 in normal cell proliferation and differentiation, tumorigenesis and progression, as well as its interactions with proteins.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Proliferação de Células , Progressão da Doença , Humanos , Mitose , Neoplasias/genética , Neoplasias/metabolismo
2.
Medicine (Baltimore) ; 97(20): e10634, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29768327

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) increases breast conservation rates in patients with resectable breast cancer at the associated cost of higher locoregional recurrence rates; however, the magnitude of the survival benefits of NAC for these patients remains undefined. Therefore, we aimed to clarify the survival benefit of NAC versus postoperative chemotherapy by conducting an updated meta-analysis of randomized clinical trials (RCTs). METHODS: The authors searched the Cochrane Library, PubMed, Embase, Web of Science, Chinese biomedical literature database, and Chinese Scientific Journals full-text database from their inception to December 2016. The authors identified relevant RCTs that compared NAC with postoperative chemotherapy in the treatment of operable breast cancer. The main endpoints were overall survival (OS) and recurrence-free survival (RFS). RESULTS: A total of 21 citations representing 16 unique studies were eligible. There were 787 deaths among 2794 patients assigned to NAC groups and 816 deaths among 2799 patients assigned to adjuvant chemotherapy groups. A meta-analysis of data indicated that there was no significant benefit in terms of OS ([hazard ratio [HR] = 1.03, 95% confidence interval [CI]: 0.94-1.13, P = .51) and RFS (HR = 1.01, 95% CI: 0.93-1.10, P = .80) between the NAC and postoperative chemotherapy groups. The pooled HR estimate for OS was not influenced by NAC cycles, the total number of chemotherapy cycles, administration of tamoxifen, administration of adjuvant chemotherapy, or type of NAC regimen. Subgroup analysis showed that the pooled HR estimate for RFS was influenced by anthracycline-containing regimens. Patients with a pathological complete response had superior survival outcomes compared with patients who had residual disease. CONCLUSION: The survival benefits for patients with operable breast cancer who received either NAC or adjuvant chemotherapy based on anthracycline regimens were comparable.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante/métodos , Neoplasias da Mama/mortalidade , Quimioterapia Adjuvante/métodos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxa de Sobrevida
3.
Biomater Sci ; 6(5): 1189-1200, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570190

RESUMO

Although polymeric nanoconjugates (NCs) hold great promise for the treatment of cancer patients, their clinical utility has been hindered by the lack of efficient delivery of therapeutics to targeted tumor sites. Here, we describe an albumin-functionalized polymeric NC (Alb-NC) capable of crossing the endothelium barrier through a caveolae-mediated transcytosis pathway to better target cancer. The Alb-NC is prepared by nanoprecipitation of doxorubicin (Doxo) conjugates of poly(phenyl O-carboxyanhydrides) bearing aromatic albumin-binding domains followed by subsequent surface decoration of albumin. The administration of Alb-NCs into mice bearing MCF-7 human breast cancer xenografts with limited tumor vascular permeability resulted in markedly increased tumor accumulation and anti-tumor efficacy compared to their conventional counterpart PEGylated NCs (PEG-NCs). The Alb-NC provides a simple, low-cost and broadly applicable strategy to improve the cancer targeting efficiency and therapeutic effectiveness of polymeric nanomedicine.


Assuntos
Albuminas/química , Permeabilidade Capilar , Doxorrubicina/química , Endotélio Vascular/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanoconjugados/química , Albuminas/efeitos adversos , Albuminas/farmacocinética , Animais , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transcitose
4.
PLoS One ; 12(7): e0180886, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750038

RESUMO

Breast cancer metastasizes to bone in the majority of patients with advanced disease. We investigated the effects of inadequate dietary calcium (Ca) on bone turnover, tumor growth, and bone response to tumor in tibia inoculated with 4T1 mammary carcinoma cells. Nine-month-old female Balb/c mice were placed on an adequate Ca (5 g/kg diet, n = 30) or low Ca (80 mg/kg diet, n = 31) diet for 14 days, then injected intratibially with 1,000 4T1 cells (transfected with luciferase for bioluminescence imaging), and sacrificed at 5, 10, or 21 days post-inoculation (n = 7-10 mice/group). Control mice (n = 6/group) were injected with carrier and sacrificed at 10 days post-inoculation. Tibiae with muscle intact were excised and evaluated by microcomputed tomography and histology. In vivo bioluminescent imaging revealed that 4T1 cells metastasized to lung. Therefore, lungs were removed for quantification of tumor. Mice fed low Ca exhibited higher bone turnover and higher tibial lesion scores than mice fed adequate Ca. Lesion severity, manifested as cortical osteolysis and periosteal woven bone formation, and tumor cell infiltration to muscle, increased with time, irrespective of diet. However, for most skeletal endpoints the rates of increase were greater in mice consuming low Ca compared to mice consuming adequate Ca. Infiltration of tumor cells into adjacent muscle, but not metastasis to lung, was also greater in mice consuming low Ca diet. The findings suggest that high bone turnover due to Ca insufficiency results in greater local mammary tumor cell growth, cortical osteolysis, woven bone formation, and invasion to muscle in mice.


Assuntos
Cálcio da Dieta/farmacologia , Neoplasias Mamárias Animais/patologia , Tíbia/patologia , Carga Tumoral/efeitos dos fármacos , Animais , Remodelação Óssea/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Microtomografia por Raio-X
5.
Biochem Res Int ; 2017: 1206015, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168055

RESUMO

Norathyriol is a metabolite of mangiferin. Mangiferin has been reported to inhibit α-glucosidase. To the best of our knowledge, no study has been conducted to determine or compare those two compounds on inhibiting α-glucosidase in vitro and in vivo by far. In this study, we determined the inhibitory activity of norathyriol and mangiferin on α-glucosidase in vitro and evaluated their antidiabetic effect in diabetic mice. The results showed that norathyriol inhibited α-glucosidase in a noncompetitive manner with an IC50 value of 3.12 µM, which is more potent than mangiferin (IC50 = 358.54 µM) and positive drug acarbose (IC50 = 479.2 µM) in the zymological experiment. Both of norathyriol and mangiferin caused significant (p < 0.05) reduction in fasting blood glucose and the blood glucose levels at two hours after carbohydrate loading and it was interesting that mangiferin and norathyriol can make the decline of the blood glucose earlier than other groups ever including normal group in the starch tolerance test. However, norathyriol and mangiferin did not significantly influence carbohydrate absorption in the glucose tolerance test. Therefore, the antidiabetic effects of norathyriol and mangiferin might be associated with α-glucosidase, and norathyriol was more potent than mangiferin.

6.
Mol Diagn Ther ; 21(3): 285-294, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28130757

RESUMO

Fibrosis is a common pathological state characterized by the excessive accumulation of extracellular matrix components, but the pathogenesis of the disease is still not clear. Previous studies have shown that microRNA-29 (miR-29) can play pivotal roles in the regulation of a variety of organ fibrosis, including cardiac fibrosis, hepatic fibrosis, lung fibrosis, systemic sclerosis, and keloid. In this review, we outline the structure, expression, and regulation of miR-29 as well as its role in fibrotic diseases.


Assuntos
Fibrose/genética , MicroRNAs/fisiologia , Regulação da Expressão Gênica , Humanos , Queloide/genética , Rim/patologia , Cirrose Hepática/genética , Miocárdio/patologia , Fibrose Pulmonar/genética , Escleroderma Sistêmico/genética
7.
Proc Natl Acad Sci U S A ; 113(32): E4601-9, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457945

RESUMO

Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Difosfonatos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanoconjugados/administração & dosagem , Osteólise/tratamento farmacológico , Animais , Difosfonatos/farmacocinética , Doxorrubicina/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pamidronato
8.
Clin Exp Metastasis ; 33(5): 475-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27209469

RESUMO

Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage IV BC with bone and lung being common metastatic sites. Here we evaluate the effects of the aromatase inhibitor letrozole on BC micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight BALB/c mice were randomly assigned to one of four groups: OVX, OVX + Letrozole, Intact, and Intact + Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by bioluminescence imaging (BLI). Following necropsy, inoculated tibiae were scanned via µCT and bone response to tumor was scored from 0 (no ectopic mineralization/osteolysis) to 5 (extensive ectopic mineralization/osteolysis). OVX mice had higher tibial pathology scores indicative of more extensive bone destruction than intact mice, irrespective of letrozole treatment. Letrozole decreased serum estradiol levels and reduced lung surface tumor numbers in intact animals. Furthermore, mice receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, BC-inoculated OVX animals had higher tibia pathology scores than BC-inoculated intact animals and letrozole reduced BC metastases to lungs. These findings suggest that, by lowering systemic estrogen level and/or by interacting with the host organ, the aromatase inhibitor letrozole has the potential to reduce ER- BC metastasis to lung.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Micrometástase de Neoplasia/tratamento farmacológico , Nitrilas/administração & dosagem , Triazóis/administração & dosagem , Animais , Inibidores da Aromatase/administração & dosagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Letrozol , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Micrometástase de Neoplasia/patologia
9.
Biomater Sci ; 3(7): 1061-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26146551

RESUMO

We report the design and development of redox-responsive chain-shattering polymeric therapeutics (CSPTs). CSPTs were synthesized by condensation polymerization and further modified with poly(ethylene glycol) (PEG) via "Click" reaction. Size-controlled CSPT nanoparticles (NPs) were formed through nanoprecipitation with high drug loading (up to 18%); the particle size increased in a concentration dependent manner. Drug release from particles was well controlled over 48 h upon redox triggering. The anticancer efficacy of the CSPT NPs was validated both in vitro and in vivo.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/toxicidade , Células MCF-7/efeitos dos fármacos , Nanopartículas/química , Paclitaxel/uso terapêutico , Polietilenoglicóis/química , Polímeros/síntese química , Animais , Química Farmacêutica , Doxorrubicina/química , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Células MCF-7/química , Camundongos , Oxirredução , Paclitaxel/química , Tamanho da Partícula , Polimerização , Polímeros/química
10.
Semin Cancer Biol ; 35 Suppl: S151-S184, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25951989

RESUMO

Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.


Assuntos
Antineoplásicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Transformação Celular Neoplásica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
11.
Semin Cancer Biol ; 35 Suppl: S78-S103, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25936818

RESUMO

Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.


Assuntos
Apoptose/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Proc Natl Acad Sci U S A ; 112(15): 4737-42, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825714

RESUMO

Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substantial tumor regression. Whereas BHPI potently inhibits nuclear estrogen-ERα-regulated gene expression, BHPI is effective because it elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis. BHPI distorts a newly described action of estrogen-ERα: mild and transient UPR activation. In contrast, BHPI elicits massive and sustained UPR activation, converting the UPR from protective to toxic. In ERα(+) cancer cells, BHPI rapidly hyperactivates plasma membrane PLCγ, generating inositol 1,4,5-triphosphate (IP3), which opens EnR IP3R calcium channels, rapidly depleting EnR Ca(2+) stores. This leads to activation of all three arms of the UPR. Activation of the PERK arm stimulates phosphorylation of eukaryotic initiation factor 2α (eIF2α), resulting in rapid inhibition of protein synthesis. The cell attempts to restore EnR Ca(2+) levels, but the open EnR IP3R calcium channel leads to an ATP-depleting futile cycle, resulting in activation of the energy sensor AMP-activated protein kinase and phosphorylation of eukaryotic elongation factor 2 (eEF2). eEF2 phosphorylation inhibits protein synthesis at a second site. BHPI's novel mode of action, high potency, and effectiveness in therapy-resistant tumor cells make it an exceptional candidate for further mechanistic and therapeutic exploration.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Biossíntese de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Indóis/química , Indóis/farmacologia , Células MCF-7 , Camundongos Nus , Estrutura Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Bibliotecas de Moléculas Pequenas/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Semin Cancer Biol ; 35 Suppl: S199-S223, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25865775

RESUMO

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/genética , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/prevenção & controle , Neovascularização Patológica/genética , Neovascularização Patológica/prevenção & controle , Transdução de Sinais , Microambiente Tumoral/efeitos dos fármacos
14.
Semin Cancer Biol ; 35 Suppl: S104-S128, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25869441

RESUMO

One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.


Assuntos
Proliferação de Células/genética , Senescência Celular/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Instabilidade Genômica/efeitos dos fármacos , Humanos , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Telomerase/efeitos dos fármacos , Telomerase/genética , Proteína Supressora de Tumor p53/genética
15.
Semin Cancer Biol ; 35 Suppl: S5-S24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25869442

RESUMO

Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.


Assuntos
Instabilidade Genômica/efeitos dos fármacos , Neoplasias/dietoterapia , Neoplasias/genética , Centrossomo/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Dieta , Instabilidade Genômica/genética , Humanos , Neoplasias/patologia , Prognóstico , Telomerase/antagonistas & inibidores , Telomerase/genética
16.
Semin Cancer Biol ; 35 Suppl: S55-S77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25749195

RESUMO

The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.


Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais , Proteínas de Ligação a DNA , Fator 15 de Diferenciação de Crescimento/genética , Via de Sinalização Hippo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Terapia de Alvo Molecular , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/genética , Proteína do Retinoblastoma/genética , Somatomedinas/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
17.
Clin Exp Metastasis ; 32(4): 323-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25749878

RESUMO

Bone is one of the most common sites for metastasis in breast cancer (BC). Micro-metastasis in bone marrow was detected in 30% of patients with stage I, II, or III BC at primary surgery and is a strong indicator of poor prognosis. The role dietary soy isoflavones play in BC with bone micro-metastasis is unclear. In this study, we examined the effects of genistein, daidzein, (-)-equol or a mixture of soy isoflavones on BC with bone micro-metastasis using an experimental model of murine mammary cancer 4T1 cells engineered with luciferase. A small number (1000) of 4T1 cells were injected into the tibia of female Balb/c mice to establish micro-tumors in bone. Soy isoflavones were supplemented in the AIN-93G diet at 750 mg/kg and were provided to mice from 3 weeks before to 3 weeks after cell injection. Bioluminescent imaging was conducted on day 2 (D2), D6, D8, D16 and D20 post cell injection and the results indicated dietary soy isoflavones enhanced the growth of bone micro-tumors on D8. Furthermore, dietary soy isoflavones stimulated metastatic tumor formation in lungs and increased Ki-67 protein expression in these metastasized tumors. In vitro, soy isoflavones (<10 µM) had limited effects on the growth, motility or invasion of 4T1 cells. Thus, the in vivo stimulatory effect could be likely due to systemic effects between the host, 4T1 tumors and soy isoflavones. In conclusion, soy isoflavones stimulate BC with bone micro-metastasis in mice and further investigations are needed regarding their consumption by BC survivors.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Isoflavonas/sangue , Isoflavonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/secundário , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Equol/sangue , Equol/farmacologia , Feminino , Genisteína/sangue , Genisteína/farmacologia , Isoflavonas/administração & dosagem , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Transplante de Neoplasias , Prognóstico , Distribuição Aleatória , Alimentos de Soja
18.
Semin Cancer Biol ; 35 Suppl: S185-S198, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25818339

RESUMO

Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.


Assuntos
Carcinogênese/imunologia , Evasão da Resposta Imune , Neoplasias/imunologia , Neoplasias/terapia , Apresentação de Antígeno/imunologia , Carcinogênese/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Neoplasias/patologia , Compostos Fitoquímicos/uso terapêutico , Linfócitos T Reguladores/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia
19.
Semin Cancer Biol ; 35 Suppl: S224-S243, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25600295

RESUMO

Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/terapia , Neovascularização Patológica/terapia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Imunoterapia , Neoplasias/prevenção & controle , Neovascularização Patológica/prevenção & controle
20.
Proc Natl Acad Sci U S A ; 111(43): 15344-9, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316794

RESUMO

Nanomedicines (NMs) offer new solutions for cancer diagnosis and therapy. However, extension of progression-free interval and overall survival time achieved by Food and Drug Administration-approved NMs remain modest. To develop next generation NMs to achieve superior anticancer activities, it is crucial to investigate and understand the correlation between the physicochemical properties of NMs (particle size in particular) and their interactions with biological systems to establish criteria for NM optimization. Here, we systematically evaluated the size-dependent biological profiles of three monodisperse drug-silica nanoconjugates (NCs; 20, 50, and 200 nm) through both experiments and mathematical modeling and aimed to identify the optimal size for the most effective anticancer drug delivery. Among the three NCs investigated, the 50-nm NC shows the highest tumor tissue retention integrated over time, which is the collective outcome of deep tumor tissue penetration and efficient cancer cell internalization as well as slow tumor clearance, and thus, the highest efficacy against both primary and metastatic tumors in vivo.


Assuntos
Antineoplásicos/química , Nanomedicina , Tamanho da Partícula , Animais , Antineoplásicos/uso terapêutico , Humanos , Células MCF-7 , Camundongos Nus , Nanoconjugados , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...